THE GLOBAL ENGINEERING CONFERENCE ON SUSTAINABLE DEVELOPMENT AND WORLD FEDERATION OF ENGINEERING ORGANISATIONS EXECUTIVE COMMITTEE MEETINGS.

Theme: Engineering Innovations for a Sustainable Future

@RwandaEngineers

Under the patronage of

CONVENTION

15th - 18th October 2024, Kigali, Rwanda

World Federation of Engineering Organizations Fédération Mondiale des Organisations d'Ingénieur

THE GLOBAL ENGINEERING CONFERENCE ON SUSTAINABLE **DEVELOPMENT AND WORLD FEDERATION OF ENGINEERING ORGANISATIONS EXECUTIVE COMMITTEE MEETINGS.**

EMBODIED CARBON RESEARCH IN RWANDA'S BUILT ENVIRONMENT Aimable Mukire Structural Engineer, MASS Design Group

Under the patronage of

15th - 18th October 2024, Kigali, Rwanda

Alex Ndibwami Architect, University Of Rwanda

@RwandaEngineers

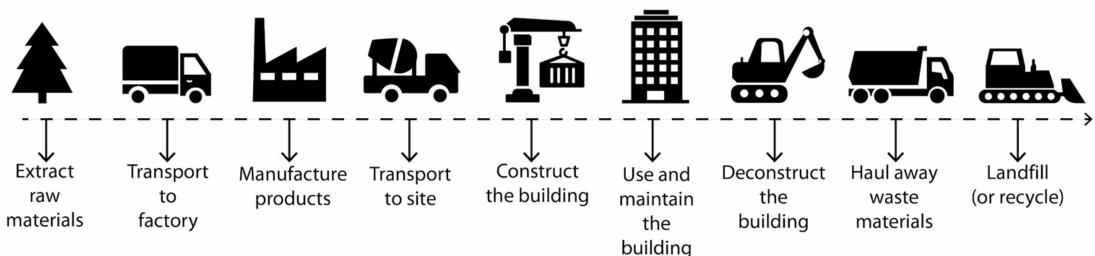
www.engineersrwanda.rw

World Federation of Engineering Organizations Fédération Mondiale des Organisations d'Ingénieurs

Embodied Carbon Research in Rwanda's Built Environment

Royal Academy of Engineering

Fei**lden** Cl**egg** Bradley Studios

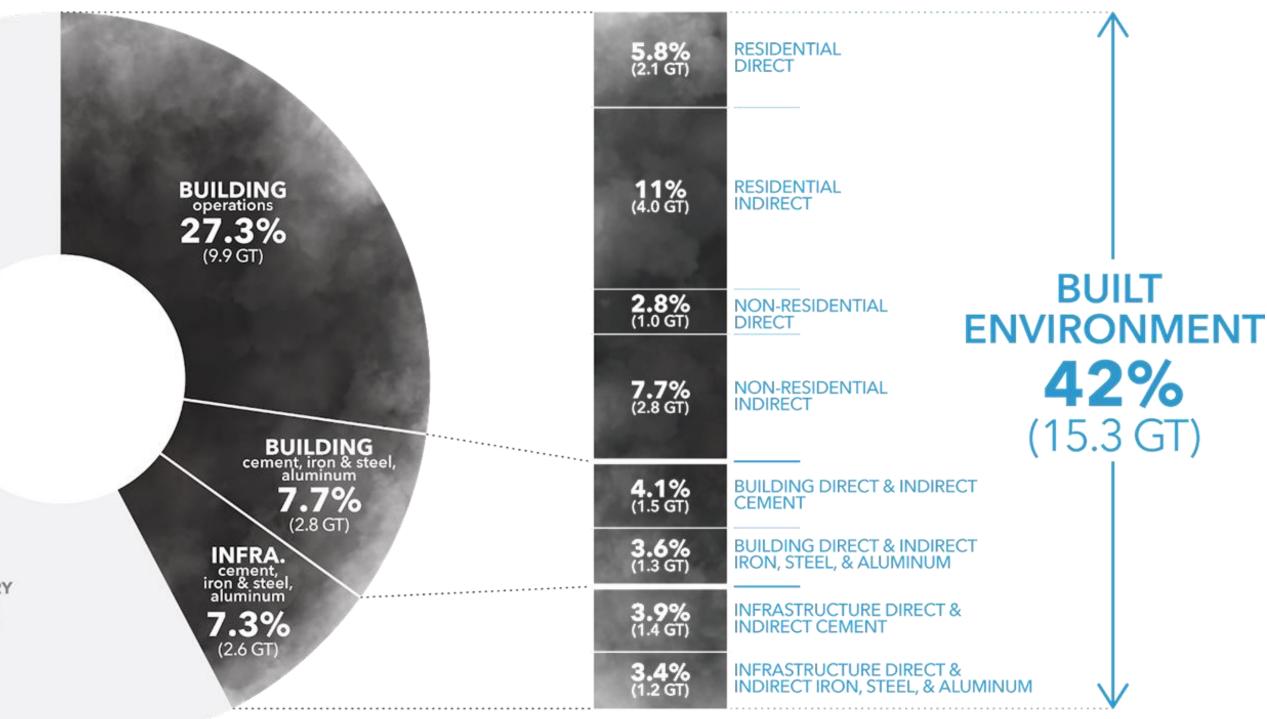


ARUP

Learning Objectives and Outcomes

1. To introduce and define Embodied Carbon (in practical terms). 2. Using examples, elaborate why we need to measure and reduce Embodied Carbon. 3. To highlight key findings from recent research on Embodied Carbon in Rwanda. 4. To introduce the Embodied Carbon Toolkit highlighting how Embodied Carbon can be measured and later reduced using the Rwanda Embodied Carbon Calculator (RwECC). 5. To suggest some immediate to future steps.

What is Embodied Carbon?


The total amount of greenhouse gas emission produced throughout the lifecycle of a building material or product

What is Embodied Carbon?

Buildings play a huge role, representing about 42% of emissions globally, and much more in urban centers

TOTAL ANNUAL GLOBAL CO₂ EMISSIONS Direct & Indirect Energy & Process Émissions (36.3 GT)

© Architecture 2030. All Rights Reserved. Analysis & Aggregation by Architecture 2030 using data sources from IEA & Statista.

Why do we need to reduce it?

Increasing urbanisation

Rwanda needs an additional 3 million housing units to accommodate a population of 22 million people by 2050.


Extreme weather

In Rwanda, the mean annual temperature has risen by about 1.4deg since 1971. Unusually heavy rains have since occurred in the North and more severe droughts in the East and South in the last two decades.

Why do we need to reduce it?

Damaged infrastructure Flooding due to heavy rain destroys infrastructure such as roads, bridges and electricity supplies.

Kigali's municipal waste is estimated to have doubled over the past ten years due to population growth.

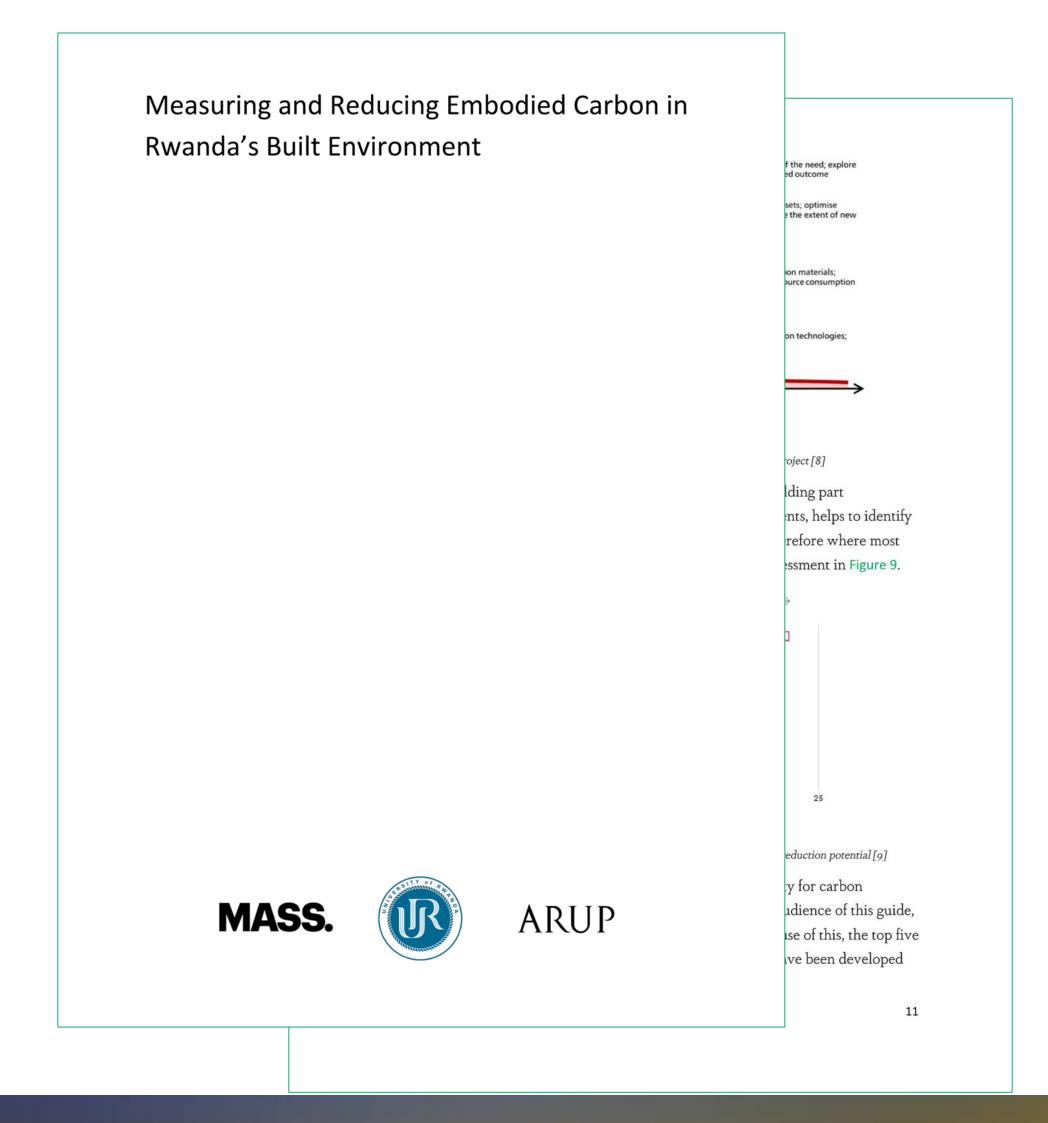
Compared to BAU

Building with low Embodied Carbon materials can actually guarantee:

- Durability if quality assurance is prioritised.
- Availability and reduced cost as technology becomes more familiar.
- Improved thermal and acoustic properties and, aesthetics.
- "Green-ness" and improved user well being.

Key Findings from Recent Research

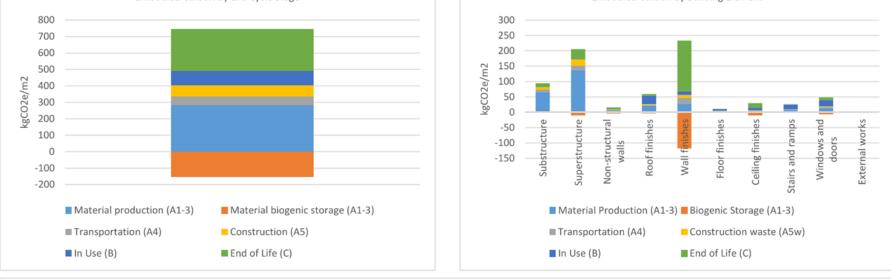
Assessments carried out on 15 buildings suggested:


- a. Embodied carbon measurement is not a major consideration.
- b. Key considerations are cost, availability and proven material properties.
- c. Decisions on low carbon materials/ processes are mostly developer facilitated.
- d. Institutional buildings proved to be the most freely accessible for such assessments.
- e. Successful implementation of low carbon materials/ processes is mostly out of consultant's keenness and competence.
- f. Curricula are vague on Embodied Carbon.
- g. Policy is rather nonspecific on measurement and reduction targets.

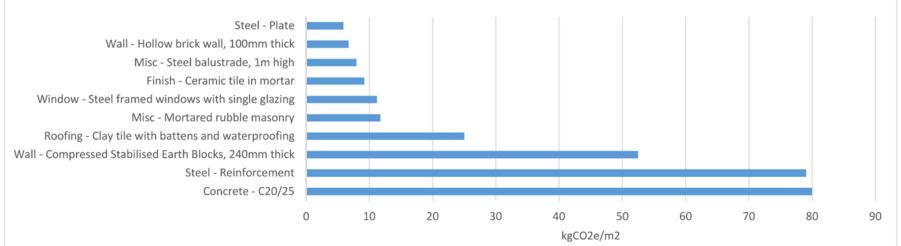
A Toolkit for Built Environment Practitioners to Measure and Reduce Embodied Carbon in Rwanda

The Embodied Carbon Toolkit - at a glance

Part 1 - The Guidance Document



Key Contents:


- Assessments
- Calculation Steps
- Case Studies
- Reduction Strategies
- Enabling Mechanisms

The Embodied Carbon Toolkit - at a glance Part 2 - The Rwanda Embodied Carbon Calculator (RwECC)

Building information				Life Cycle Stages		kgCO2e	kgCO2e/m ²	kgCO2e/ m²/yr
Project name	RICA Y2+3			Material production (A1-3	3)	655298	285	4.7
Project stage	In Use			Material biogenic storage	(A1-3)	-353656	-154	-2.6
Building classification	Educational			Transportation (A4)		118897	52	0.9
Building use	Residential building	for 86 students	at an	Construction (A5)		153422	67	1.1
	agricultural universit	ty		In Use (B)		207133	90	1.5
Date of practical completion	01 August 2021			End of Life (C)		577104	251	4.2
Project district	Bugasera					Which building elements		are included
Email contact	jkitchin@mass-group	jkitchin@mass-group.org			Building Information		in the assessment?	
Name of assessor and organisation	James Kitchin, MASS	Design Group		Gross floor area (m ²)	2300	Substructure	•	Yes
Assessment date	27 May 2022			Service life (years)	60	Superstructu	ire	Yes
Assessment version	1			# of occpuants	86	Non-structur	al walls	Yes
Embodied carbon reduction importance	Very important to pr	oject success		# of above ground floors	2	Roof finishes	;	Yes
Structural systems	Rubble masonry fou	ndations, CSEB	walls, reinforce	# of below ground floors	0	Wall finishes		Yes
	concrete floors and t	timber roof.				Floor finishes		Yes
Building description	Two storey residenti	al building with	n bedrooms, con	munal areas and service are	ea. There are	Ceiling finish	es	Yes
	limited finishes in th	e building.				Stairs and ra	mps	Yes
Notes on assumptions and limitations of	External works are not included but will be included in			in Assessment Version 2.		Windows an	d doors	Yes
assessment						External wor	ks	No
Embodied Carbon by Life Cycle Stage Embodied Carbon by Building Element				:				

Embodied Carbon to Practical Completion of Top 10 Materials and Assemblies (includes biogenic storage

Key tabs:

- The Summary tab project information
- The Input tab materials and assemblies

RwECC

Step 1:

Enter project information in the <mark>Yellow Cells</mark> under the **Summary Tab**

		A	L		
1	Puilding inf	armation			
-	Building inf				
2	Project nam				
3	Project stag				
4	Building cla				
5	Building us	e			
6					
7	Date of pra	ctical com	pletion		
8	Project dist	rict			
9	Email conta	ict			
10	Name of as	sessor and	organisatio	n	
11	Assessment	date			
12	Assessment	version			
13	Embodied of	arbon red	uction impo	ortance	e
14	Structural s	ystems			
15					
16	Building de	scription			
17					
18	Notes on as	sumption	s and limitat	tions o	of
19	assessment				
20					
21					
22		5	- h - d'a d Cash		:6-
23		Eſ	nbodied Carb	on by L	.ire
24	4500		_		
25	4000				
26	3000				
27					
28	0002 m2 0002 m2 1500	0			
29	ü 1500	0			
30	1000				
31	500	0			
32	-500	-			
33					
34	1	-	ction (A1-3)	N	
35		sportation	(A4)	C	:on
36	■ In U	se (B)		E	nd
37					
38			Embodied C	arbon	to
39	-				
40	Wall - Hol	low concr	ete block wi	th fille	d d
40					
41		Soil and r	ock - Compa	acted a	agg
-+2	•	Intro	Summ	arv	
	,	intro	Junna	ur y	1

	В	С	D		E	F	G		н	I	J	К	L	М
												kgCO2e/		
						Life Cycle St	ages			kgCO2e	kgCO2e/m ²	m²/yr		
	Swiss Cube					Material pro	duction	(A1-3)		1456308	25109	418.5		
	In Use					Material bio	genic sto	rage (A1	L-3)	-62084	-1070	-17.8	3	
	Residential					Transportati	on (A4)			151293	2608	43.5	5	
	Single family	residential				Construction	n (A5)			194739	3358	56.0)	
						In Use (B)				390611	6735	112.2		
	15 July 1905					End of Life (C)			254467	4387	73.1		
	Gasabo					D. 11.11				Which buildin	-	re included		
						Building Info		5	2	in the assess		Yes		
	20/06/2022					Gross floor a		60		Substructure		Yes		
	29/06/2023 v1					Service life (J	Superstructur				
		ant to projec	teuccocc			# of occpuar		4 ors 2		Non-structura		Yes		
2	Fairly importa			bond	wall	# of above g				Roof finishes		Yes		
	Stone mason wood floor ar	-		bonu	wall,	# of below g		ors 0		Wall finishes		Yes Yes		
										Floor finishes		Yes		
										Ceiling finishe		Yes		
f										Stairs and ran		Yes		
										Windows and		No		
										External work		No		
										Cooling syste	ms			
ite	Cycle Stage		-			E	mbodied	Carbon b	y Building El	ement				
				8000 7000										
			2	6000										
			kgCO2e/m2	5000 4000		_								
			- O2	3000										
				1000 0					_					
			-	-1000		alls	les	les	les	hes hps	rks rks	S B		
					Substructure	Superstructure Non-structural walls	Roof finishes	Wall finishes	Floor finishes	Ceiling finishes Stairs and ramps	Windows and doors External works	Cooling systems		
			- []		ubst	perst	Roof	Nall	loor	iling s and	/s an terna	ling		
			-		0)	Sul n-stri	-		LL.	Ce	ndov Ex	Coo		
/lat	terial biogenic st	torage (A1-3)				Nor					Wi			
on	struction (A5)				Materia	l Production (A	1-3) <mark>=</mark> Biog	genic Sto	rage (A1-3)	■ Transportat	tion (A4)			
nd	of Life (C)				Constru	ction waste (A5	w) 🔳 In U	lse (B)		End of Life	(C)			
	. ,													
to	Practical Com	pletion of To	op 10 Mater	ials an	d Assemb	lies (includes	biogenic	storage	and exclude	es cooling syste	ems)	-		
d d	cores, 150mm													
age	gregates and g	ravel												
I	nput No	o Input_D	Data Tab	oles	No Ir	nput_S_As	sem	No I	nput_A	ssem No	o Input_M	lat No	Input_Ref	No Inp

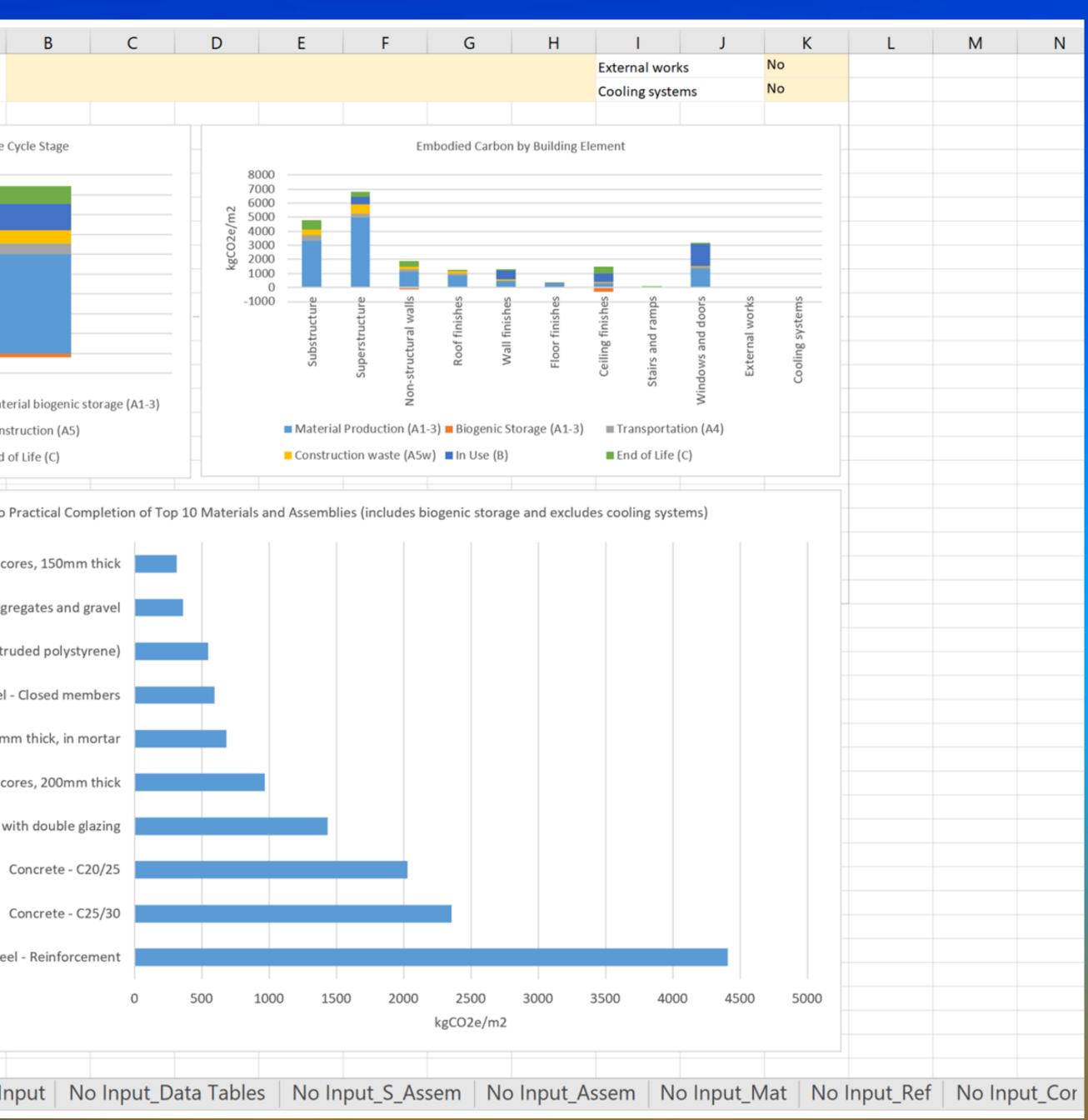
RwECC

Step 2:

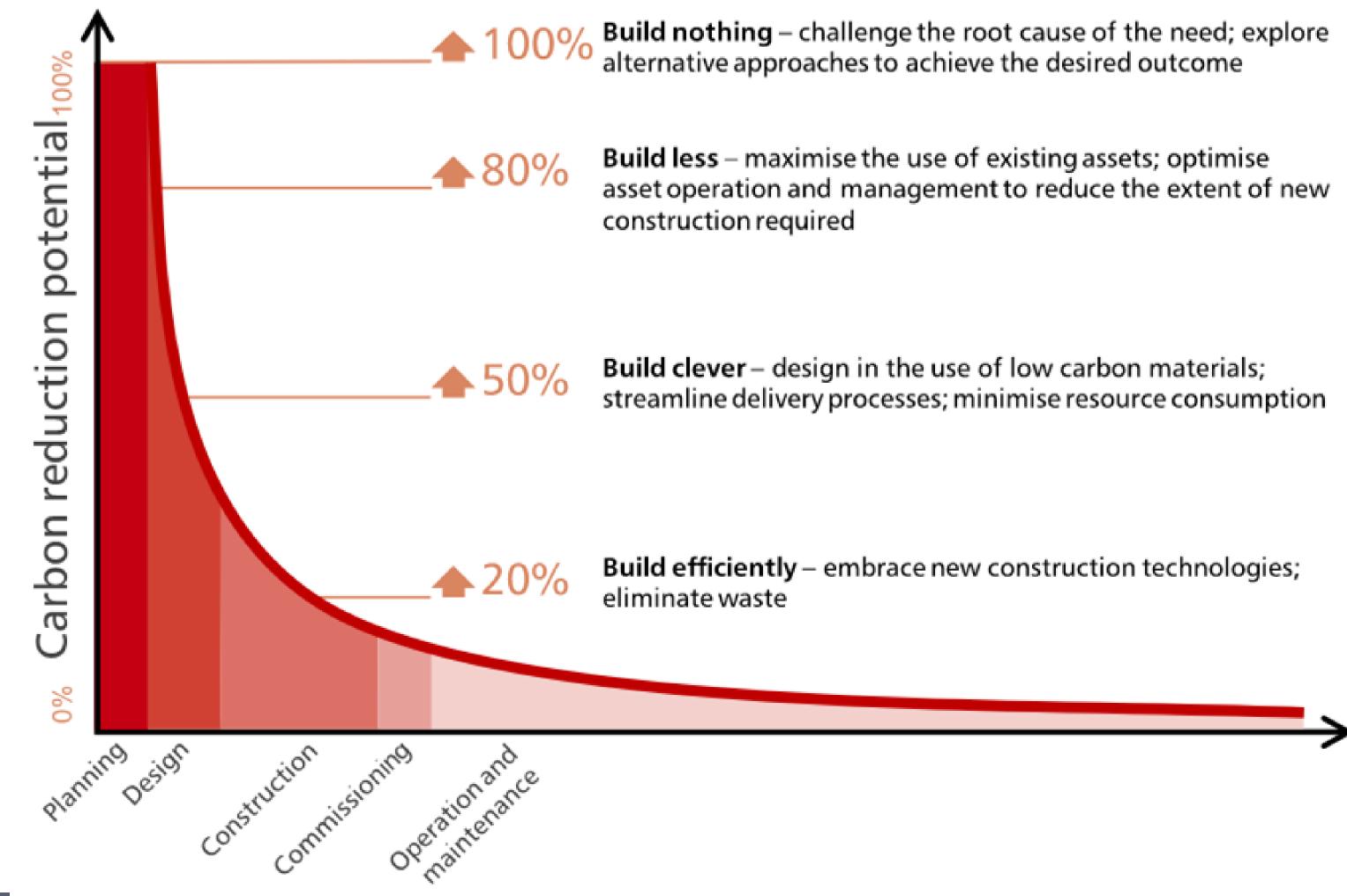
Under the Input tab, enter information under each column - for example: select materials and assemblies from the drop down menus and then in the subsequent column enter the quantity of material.

Browse each column heading for more precise instructions.

			A				
1	Cooling	Systems	Emissions				
2	% of flo	or area tl	hat is conditi	one			
3	Refrigerant Type						
4	System	Туре					
5	System	power (l	eave this bla	nk a			
6	Refriger	ent char	ge (leave this	bla			
7							
8							
9	Comme	nts					
10	Approve	ed impor	ted filling , st	ruc			
11	Hardcor	e bed, tł	nickness 150	mm			
12	Rubble	masonry	under found	atio			
13	Sand bli	nding to	hardcore, et	c.,			
14	1000 Ga	uge poly	thene laid u	nde			
15	110mm	Dia perf	orated pipe				
16	Soakawa	ay 1m x 3	1m x1.5m de	ер			
17	2 layer o	of 11mm	thick styrofo	am			
18	Blinding	under f	oundations a	nd l			
19	Column	s					
20	Raft Fou	Indation	S				
21	Column	Column Foundations					
22	Ground	beams					
23	Ground	bearing	slab, 150mm	thk			
24	Thicken	ing unde	r ground bea	ring			
25		d reinfor					
26		nd stairca					
27			s, thickness 2				
28	-		ickness 200 i	mm			
29	-	nickness	400 mm				
30	Beams						
31			upstand bean	ns, (
32	Column						
33		d reinfor					
34		Columns SHS 150x150x10 mm					
35		CHS Columns 139.7 x 8 mm					
36			8.3 x 8 mm				
37			3.7 x 10 mm				
38	MS base plate size 300 x 300 x 10						
39			e 300 x 300 x				
40	450 mm	B16 and	hor L- shape	d ba			
-	•	Intro	Summary	h			


		В		С	D	E		F
ed			0%					Refrigerant c
			R13	34a				0
			No	ne				
and an e	stimate shall be made)				kW			A1-3
lank and	an estimate shall be made)				kg			0
	Materials and Assemblies		Qu	antity	Input Units	Building Elemen	t	A1-3
ctured b	a Soil and rock - Compacted	l aggregates and gravel	-	435.00	m3	Substructure		5655
m	Soil and rock - Compacted	aggregates and gravel	^	64.20	m3	Substructure		835
	es Soil and rock - Compacted			9.00	m3	Substructure		590
thickne	ss Soil and rock - Compacted	soil		21.40	m3	Substructure		83
er surfac		egates and gravel		428.00	m2	Substructure		1733
	Soil and rock - Loose sand			80.00	m	Substructure		806
1	Soil and rock - Loose soil			1.50	m3	Substructure		16
n insulati	Steel - A142 Mesh Reinford	cement excl. laps	~	10.91	m3	Substructure		1386
l bases, t	Steel - A193 Mesh Reinford	cement excl. laps	•	15.50	m3	Substructure		3248
	Concrete - C20/25			2.00	m3	Substructure		523
	Concrete - C20/25			191.00	m3	Substructure		49920
	Concrete - C20/25			33.00	m3	Substructure		8625
	Concrete - C20/25			32.00	m3	Substructure		8364
nk	Concrete - C20/25			115.35	m3	Substructure		30148
ng slab	Concrete - C20/25			7.00	m3	Substructure		1830
	Steel - Reinforcement			39147.50	kg	Substructure		77904
	Concrete - C20/25			6.00	m3	Stairs and ramps	;	1568
) mm	Concrete - C25/30			237.00	m3	Superstructure		66038
n	Concrete - C25/30			1.60	m3	Stairs and ramps	;	446
	Concrete - C25/30			116.80	m3	Superstructure		32545
	Concrete - C25/30			58.00	m3	Superstructure		16161
, curved	on Concrete - C25/30			9.29	m3	Superstructure		2589
	Concrete - C25/30			1.00	m3	Superstructure		279
	Steel - Reinforcement			66640.00	kg	Superstructure		132614
	Steel - Closed members			2643.20	kg	Superstructure		6687
	Steel - Closed members			4212.00	kg	Superstructure		10656
	Steel - Closed members			2117.20	kg	Superstructure		5357
	Steel - Closed members			1132.50	kg	Superstructure		2865
10 mm	Steel - Plate			487.49	kg	Superstructure		1199
0 mm	Steel - Plate			487.49	kg	Superstructure		1199
bars thre	ad Steel - Galvanised			196.24	-	Superstructure		542
Input	No Input_Data Tables	No Input_S_Assem	No Inn	ut_Assem		Mat No Inp	ut Ref No	Input_Cor
mpar	no input_butu rubies	no mpac_o_Assem	no mp	at_Assem	no input			mpat_con

RwECC


Step 3:

View graphs and results under the Summary Tab to determine EC hotspots.

	А	
19	assessment	
20		
21		
22	Embodied Carbon by Li	fe
23		16 (
24	45000	
25	35000	
26	30000	
27		
28	00002 25	
20	ي 25000 20000 15000	
	10000	
30	5000	
31	-5000	
32	-5000	
33	Material production (A1-3)	late
34	■ Transportation (A4) ■ Co	ons
35	In Use (B)	nd
36		
37		
38	Embodied Carbon	to
39		
40	Wall - Hollow concrete block with filled	d co
41		
42	Soil and rock - Compacted a	gg
43		
44	Insulation - XPS (E	xtr
45		
46	Ste	el
40	Einich Stone dedding 400	0
47	Finish - Stone cladding, 100	υm
40 49	Wall - Hollow concrete block with filled	
		10
50	Window - Aluminium framed window:	s w
51		~ *1
52		
53		
54		
55		
56	s	tee
57		
58		
59		
60		_
61		
-	Intro Summary	Ir

Impact reduction methods

Impact reduction methods

<u>Client Objective</u> Award winning Meet their ESG goals Less maintenance Quick construction Improve user wellbeing Accommodate change in use Low costs

Impact reduction methods

Embodied Carbon Reduction Achieve AIA 2030 or RIBA 2030 Climate Challenge Align ESG goal with climate goals Reduce finishes and use durable material Off-site manufacturing and design for deconstruction Natural materials Design for flexibility and adaptability Smaller buildings

Impact reduction methods

<u>Client Objective</u> Award winning Meet their ESG goals Less maintenance Quick construction Improve user wellbeing Accommodate change in use Low costs

Embodied Carbon Reduction Achieve AIA2030 or RIBA 2030 Climate Challenge Align ESG goal with climate goals Reduce finishes and use durable material Off-site manufacturing and design for deconstruction Natural materials Design for flexibility and adaptability Smaller buildings Adaptive reuse No building Multi purposes spaces Columns Passive environmental design Off site manufacturing Regular repeating elements Limiting basements Limiting podium structures Optimal window to wall ratio

Impact reduction methods

Interiors

8 methods such as: avoid adhesive attachments for easier deconstruction

Superstructure

14 methods such as: embrace the column and avoid transfer beams

Substructure

11 methods such as: use 56-day strength concrete

Services

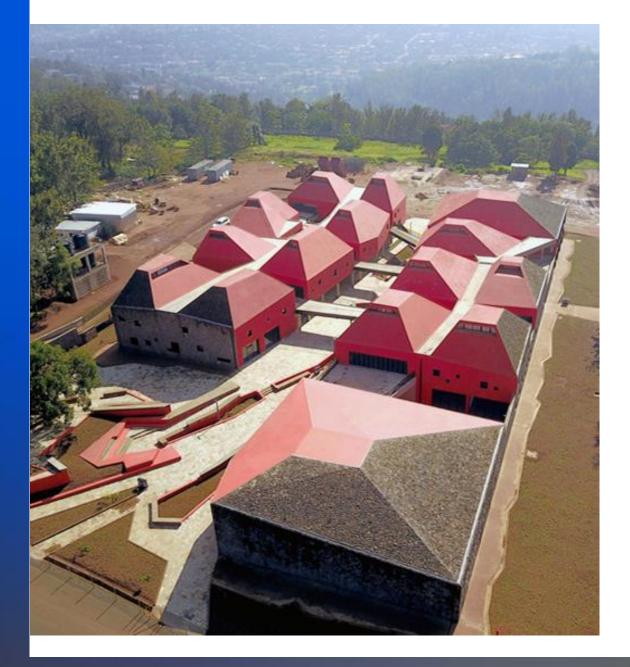
8 methods such as: use low GWP refrigerants

Envelope

10 methods such as: minimise glazing beyond what is needed for daylight and views

External works

12 methods such as: use permeable pavers to save 40% material


Case Studies - "Institutional Buildings"

School of Architecture and Built Environment

RICA Year 2&3 Housing

Whole Building A-C Embodied carbon: 983 kgCO2e/m²

Whole Building A-C Embodied carbon: **566 kgCO2e/m**²

Rwanda Cricket Stadium

Whole Building A-C Embodied carbon: **443 kgCO2e/m**²

School of Mining and Geology

Whole Building A-C Embodied carbon: **1600 kgC02e/m**²

Immediate to Future Steps - Key Reflections

Understanding motivators of diffusion/ uptake

- Common Practice
- Mass Media Advertisement
- Exemplar Projects
- Sustainability led Initiatives
- Building Code

Immediate to Future Steps - Shaping Key Competencies

Literacy to Competency	Knows What	Knows How	Knows Why	Shows What	Shows How	Shows Why
Climate						
Carbon						
LCA						
Resource Efficiency						
Measurement						
Reduction						
Assessment						
Practice						

Immediate to Future Steps - Key Players and Modes

Literacy to Competency	Programmes	Short Courses	Seminars/ Workshops	Discourse/ Roundtables/ Fireside Chats	Research
University Education					
Professional Bodies/ Firms					
Government Agencies					

Immediate to Future Steps - Positioning

Literacy to Competency	Private Firm
(Sustainability) Designers	
(Sustainability) Assessors	
(Sustainability) Managers	
(Sustainability) Surveyors	

Planning/ City Authority	Freelance/ Independent Consultants

A Recap

- Kelvin
- impending volume of construction.
- earning potential savings.
- potential to mitigate both carbon and cost.
- design process.
- competencies and expectations.

What is Embodied Carbon? "If you can not measure it, you can not Improve it." Lord

We need to confront the concerns over a climate crisis, its impacts and the

Inevitably, there are opportunities for enhancing local construction processes and

Indeed, investing in local materials, local technology and processes has the

The Embodied Carbon Toolkit highlights precisely how to measure and reduce Embodied Carbon and is applicable at several stages, preferably early on in the

Academia, Policy and Practice ought to strategise how to mainstream such tools,

A Toolkit for Built Environment Practitioners to Measure and Reduce Embodied Carbon in Rwanda

THANK YOU / MURAKOZE

@RwandaEngineers • (+250) 789 904 228 gecokigali2024@engineersrwanda.rw • www.engineersrwanda.rw

Under the patronage of

THE GLOBAL ENGINEERING CONFERENCE ON SUSTAINABLE **DEVELOPMENT AND WORLD FEDERATION OF ENGINEERING ORGANISATIONS EXECUTIVE COMMITTEE MEETINGS.**

15th - 18th October 2024, Kigali, Rwanda

@RwandaEngineers

www.engineersrwanda.rw

World Federation of Engineering Organizations Fédération Mondiale des Organisations d'Ingénieurs

